166

Bioremediation for Sustainable Environmental Cleanup

Umrania, V. 2006. Bioremediation of toxic heavy metals using acidothermophilic autotrophes. Bioresour. Technol.

97: 1237–1242.

United Nations Environment Programme. 2013. Global Mercury Assessment Sources, Emissions, Releases, and

Environmental Transport. Geneva, Switzerland: United Nations Environment Programme Chemicals Branch.

Valls, M., S. Atrian, V. de Lorenzo and L. A. Fernández. 2000. Engineering a mouse metallothionein on the cell

surface of Ralstonia eutropha CH34 for immobilization of heavy metals in soil. Nat. Biotechnol. 18: 661–665.

Aken, B. V., R. Tehrani and J. L. Schnoor. 2011. Endophyte-assisted phytoremediation of explosives in poplar trees

by Methylobacterium populi BJ001 T. In Endophytes of Forest Trees (pp. 217–234). Springer, Dordrecht.

Van Dillewijn, P., J. L. Couselo, E. Corredoira, A. Delgado, A. Ballester and J. L. Ramo. 2008 Bioremediation of

2, 4, 6-trinitrotoluene by bacterial nitroreductase expressing transgenic aspen. Environ. Sci. Technol. 42:

7405–7410.

Violante, A., S. D. Gaudio, M. Pigna, M. Ricciardella and D. Banerjee. 2007. Coprecipitation of arsenate with metal

oxides. 2. Nature, Mineralogy, and Reactivity of Iron(III) Precipitates. Environ. Sci. Technol. 41: 8275–8280.

Wang, F., J. Yao, Y. Si, H. Chen, M. Russel and K. Chen. 2010. Short-time effect of heavy metals upon microbial

community activity community activity. J. Hazard. Mater. 15: 510–6.

Wani, S. H., G. S. Sanghera, H. Athokpam, J. Nongmaithem, R. Nongthongbam, B. S. Naorem and H. S. Athokpam.

2012. Phytoremediation: curing soil problems with crops. Afr. J. Agric. Res. 7: 3991–4002.

Wiatrowski, H. A., P. M. Ward and T. Barkay. 2006. Novel reduction of mercury (II) by mercury-sensitive dissimilatory

metal-reducing bacteria. Environ. Sci. Technol. 40: 6690–6696.

Wixson, G. and B. Davies. 1994. Guidelines for lead in soil: proposal of the society of environmental geochemistry

and health. Environ. Sci. Technol. 28: 26A–31A.

Xiong, X., L. Yanxia, L. Wei, L. Chunye H. Wei and Y. Ming. 2010. Copper content in animal manures and potential

risk of soil copper pollution with animal manure use in agriculture. Resour. Conserv. Recycl. 54: 985–990.

Xu, S., Y. Xing, S. Liu, Q. Huang and W. Chen. 2019. Chen Role of novel bacterial Raoultella sp. strain X13 in plant

growth promotion and cadmium bioremediation in soil. Appl. Microbiol. Biotechnol. 103: 3887–3897.

Xun, Y., L. Feng, Y. Li and H. Dong. 2017. Mercury accumulation plant Cyrtomium macrophyllum and its potential

for phytoremediation of mercury polluted sites. Chemosphere. 189: 161–170.

Yamaji, K., Y. Watanabe, H. Masuya, A. Shigeto, H. Yui and T. Haruma. 2016. Root fungal endophytes enhance

heavy-metal stress tolerance of Clethra barbinervis growing naturally at mining sites via growth enhancement,

promotion of nutrient uptake and decrease of heavy-metal concentration. PLoS One. 11: 1–15.

Yang, J. Y., X. E. Yang, Z. L. He, T. Q. Li, J. L. Shentu and P. J. Stoffella. 2006. Effects of pH, organic acids, and

inorganic ions on lead desorption from soils. Environ. Pollut. 143: 9–15.

Ok, Y. S., S. E. Oh, M. Ahmad, S. Hyun, K. R. Kim and D. H. Moon. 2010. Effects of natural and calcined oyster

shells on Cd and Pb immobilization in contaminated soils. Environ. Earth Sci. 61: 1301–8.

Zayed, A. M. and N. Terry. 1994. Selenium volatilization in roots and shoots: effects of shoot removal and sulfate

level. J. Plant Physiol. 143: 8–14.

Zhang, M. Y., A. Bourbouloux, O. Cagnac, C. V. Srikanth, D. Rentsch, A. K. Bachhawat and S. Delrot. 2004. A novel

family of transporters mediating the transport of glutathione derivatives in plants. Plant Physiol. 134: 482–491.

Zhang, X., T. Zhong and L. Liu. 2015. Ouyang X. Impact of soil heavy metal pollution on food safety in China. PLoS

One. 10: 1–14.

Zhuang, X., J. Chen, H. Shim and Z. Bai. 2007. New advances in plant growth-promoting rhizobacteria for

bioremediation. Environ. Int. 33: 406–13.

Złoch, M., C. T. Kowalkowski, J. Tyburski and K. Hrynkiewicz. 2017. Modeling of phytoextraction efficiency

of microbially stimulated Salix dasyclados L. in the soils with different speciation of heavy metals Int. J.

Phytoremediation. 19: 1150–1164.